37 research outputs found

    Hidden conditional random fields for classification of imaginary motor tasks from EEG data

    Get PDF
    Brain-computer interfaces (BCIs) are systems that allow the control of external devices using information extracted from brain signals. Such systems find application in rehabilitation of patients with limited or no muscular control. One mechanism used in BCIs is the imagination of motor activity, which produces variations on the power of the electroencephalography (EEG) signals recorded over the motor cortex. In this paper, we propose a new approach for classification of imaginary motor tasks based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they involve learned statistical models matched to the classification problem; they do not suffer from some of the limitations of generative models; and they include latent variables that can be used to model different brain states in the signal. Our approach involves auto-regressive modeling of the EEG signals, followed by the computation of the power spectrum. Frequency band selection is performed on the resulting time-frequency representation through feature selection methods. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV and the results show that our approach overperforms all methods proposed in the competition. In addition, we present a comparison with an HMM-based method, and observe that the proposed method produces better classification accuracy

    A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data

    Get PDF
    We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on auto-regressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy

    Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data

    Get PDF
    In this work, two methods based on statistical models that take into account the temporal changes in the electroencephalographic (EEG) signal are proposed for asynchronous brain-computer interfaces (BCI) based on imaginary motor tasks. Unlike the current approaches to asynchronous BCI systems that make use of windowed versions of the EEG data combined with static classifiers, the methods proposed here are based on discriminative models that allow sequential labeling of data. In particular, the two methods we propose for asynchronous BCI are based on conditional random fields (CRFs) and latent dynamic CRFs (LDCRFs), respectively. We describe how the asynchronous BCI problem can be posed as a classification problem based on CRFs or LDCRFs, by defining appropriate random variables and their relationships. CRF allows modeling the extrinsic dynamics of data, making it possible to model the transitions between classes, which in this context correspond to distinct tasks in an asynchronous BCI system. On the other hand, LDCRF goes beyond this approach by incorporating latent variables that permit modeling the intrinsic structure for each class and at the same time allows modeling extrinsic dynamics. We apply our proposed methods on the publicly available BCI competition III dataset V as well as a data set recorded in our laboratory. Results obtained are compared to the top algorithm in the BCI competition as well as to methods based on hierarchical hidden Markov models (HHMMs), hierarchical hidden CRF (HHCRF), neural networks based on particle swarm optimization (IPSONN) and to a recently proposed approach based on neural networks and fuzzy theory, the S-dFasArt. Our experimental analysis demonstrates the improvements provided by our proposed methods in terms of classification accuracy

    Probabilistic graphical models for brain computer interfaces

    Get PDF
    Brain computer interfaces (BCI) are systems that aim to establish a new communication path for subjects who su er from motor disabilities, allowing interaction with the environment through computer systems. BCIs make use of a diverse group of physiological phenomena recorded using electrodes placed on the scalp (Electroencephalography, EEG) or electrodes placed directly over the brain cortex (Electrocorticography, ECoG). One commonly used phenomenon is the activity observed in specific areas of the brain in response to external events, called Event Related Potentials (ERP). Among those, a type of response called P300 is the most used phenomenon. The P300 has found application in spellers that make use of the brain's response to the presentation of a sequence of visual stimuli. Another commonly used phenomenon is the synchronization or desynchronization of brain rhythms during the execution or imagination of a motor task, which can be used to differentiate between two or more subject intentions. In the most basic scenario, a BCI system calculates the differences in the power of the EEG rhythms during execution of different tasks. Based on those differences, the BCI decides which task has been executed (e.g., motor imagination of left or right hand). Current approaches are mainly based on machine learning techniques that learn the distribution of the power values of the brain signals for each of the possible classes. In this thesis, making use of EEG and ECoG recording methods, we propose the use of probabilistic graphical models for brain computer interfaces. In the case of ERPs, in particular P300-based spellers, we propose the incorporation of language models at the level of words to increase significantly the performance of the spelling system. The proposed framework allows also the incorporation of different methods that take into account language models based on n-grams, all of this in an integrated structure whose parameters can be efficiently learned. In the context of execution or imagination of motor tasks, we propose techniques that take into account the temporal structure of the signals. Stochastic processes that model temporal dynamics of the brain signals in different frequency bands such as non-parametric Bayesian hidden Markov models are proposed in order to solve the problem of selection of the number of brain states during the execution of motor tasks as well as the selection of the number of components used to model the distribution of the brain signals. Following up on the same line of thought, hidden conditional random fields are proposed for classification of synchronous motor tasks. The combination of hidden states with the discriminative power of conditional random fields is shown to increase the classification performance of imaginary motor movements. In the context of asynchronous BCIs, we propose a method based on latent dynamic conditional random fields that is capable of modeling the internal temporal dynamics related to the generation of the brain signals, and external brain dynamics related to the execution of different mental tasks. Finally, in the context of asynchronous BCIs a model based on discriminative graphical models is presented for continuous classification of finger movements from ECoG data. We show that the incorporation of temporal dynamics of the brain signals in the classification stages increases significantly the classification accuracy of different mental states which can lead to a more effective interaction between the subject and the environment

    Clasificación de señales EEG para aplicaciones en el desarrollo de interfaces cerebro – computadora

    No full text
    El presente trabajo describe el diseño e implementación de algoritmos para clasificación de señales EEG y su aplicación en el diseño de interfaces cerebro computadora (BCI). Se plantea el desarrollo de dos bloques principales: extracción de características y clasificación. La extracción de características involucra el uso de la actividad oscilatoria cerebral como entrada para la BCI. Se plantea el uso de métodos paramétricos con resolución en tiempo y frecuencia (STFT) y no- paramétricos (modelo autorregresivos) para la extracción de características. La clasificación se realiza empleando Análisis Discriminante Lineal, Redes Neuronales Artificiales y Máquinas de Soporte Vectorial y se realiza un análisis comparativo de los resultados obtenidos con el fin de determinar el mejor desempeño obtenido en términos del tiempo de computo y distintos criterios de evaluación (kappa Cohen’s Coefficent, Información Mutua y tasa de acierto en la clasificación).

    Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields

    No full text
    Objective. In this work we propose the use of conditional random fields with long-range dependencies for the classification of finger movements from electrocorticographic recordings. Approach. The proposed method uses long-range dependencies taking into consideration time-lags between the brain activity and the execution of the motor task. In addition, the proposed method models the dynamics of the task executed by the subject and uses information about these dynamics as prior information during the classification stage. Main results. The results show that incorporating temporal information about the executed task as well as incorporating long-range dependencies between the brain signals and the labels effectively increases the system's classification performance compared to methods in the state of art. Significance. The method proposed in this work makes use of probabilistic graphical models to incorporate temporal information in the classification of finger movements from electrocorticographic recordings. The proposed method highlights the importance of including prior information about the task that the subjects execute. As the results show, the combination of these two features effectively produce a significant improvement of the system's classification performance

    Word-level language modeling for P300 spellers based on discriminative graphical models

    No full text
    Objective. In this work we propose a probabilistic graphical model framework that uses language priors at the level of words as a mechanism to increase the performance of P300-based spellers. Approach. This paper is concerned with brain-computer interfaces based on P300 spellers. Motivated by P300 spelling scenarios involving communication based on a limited vocabulary, we propose a probabilistic graphical model framework and an associated classification algorithm that uses learned statistical models of language at the level of words. Exploiting such high-level contextual information helps reduce the error rate of the speller. Main results. Our experimental results demonstrate that the proposed approach offers several advantages over existing methods. Most importantly, it increases the classification accuracy while reducing the number of times the letters need to be flashed, increasing the communication rate of the system. Significance. The proposed approach models all the variables in the P300 speller in a unified framework and has the capability to correct errors in previous letters in a word, given the data for the current one. The structure of the model we propose allows the use of efficient inference algorithms, which in turn makes it possible to use this approach in real-time applications
    corecore